A general linear model for MEG beamformer imaging.
نویسندگان
چکیده
A new general linear model (GLM) beamformer method is described for processing magnetoencephalography (MEG) data. A standard nonlinear beamformer is used to determine the time course of neuronal activation for each point in a predefined source space. A Hilbert transform gives the envelope of oscillatory activity at each location in any chosen frequency band (not necessary in the case of sustained (DC) fields), enabling the general linear model to be applied and a volumetric T statistic image to be determined. The new method is illustrated by a two-source simulation (sustained field and 20 Hz) and is shown to provide accurate localization. The method is also shown to locate accurately the increasing and decreasing gamma activities to the temporal and frontal lobes, respectively, in the case of a scintillating scotoma. The new method brings the advantages of the general linear model to the analysis of MEG data and should prove useful for the localization of changing patterns of activity across all frequency ranges including DC (sustained fields).
منابع مشابه
B-Mode Photoacoustic Imaging using Linear Array: Numerical Study for Forward-Backward Minimum Variance Beamformer Combined with Delay-Multiply-and-Sum
Photoacoustic imaging (PAI) is a promising medical imaging modality which provides the resolution of Ultrasound (US) and the contrast of Optical imaging modalities. One of the most important challenges in PAI is image formation, especially in the case that a linear-array US transducer is used for data acquisition. This is due to the fact that in the linear-array scenario, there is only 60 degre...
متن کاملSource-space ICA for MEG source imaging.
OBJECTIVE One of the most widely used approaches in electroencephalography/magnetoencephalography (MEG) source imaging is application of an inverse technique (such as dipole modelling or sLORETA) on the component extracted by independent component analysis (ICA) (sensor-space ICA + inverse technique). The advantage of this approach over an inverse technique alone is that it can identify and loc...
متن کاملScanning Reduction Strategy in MEG/EEG Beamformer Source Imaging
MEG/EEG beamformer source imaging is a promising approach which can easily address spatiotemporal multi-dipole problems without a priori information on the number of sources and is robust to noise. Despite such promise, beamformer generally has weakness which is degrading localization performance for correlated sources and is requiring of dense scanning for covering all possible interesting ent...
متن کاملCombined MEG and fMRI model
An integrated model for magnetoencephalography (MEG) and functional Magnetic Resonance Imaging (fMRI) is proposed. In the proposed model, MEG and fMRI outputs are related to the corresponding aspects of neural activities in a voxel. Post synaptic potentials (PSPs) and action potentials (APs) are two main signals generated by neural activities. In the model, both of MEG and fMRI are related to t...
متن کاملOptimizing estimation of hemispheric dominance for language using magnetic source imaging.
The efficacy of magnetoencephalography (MEG) as an alternative to invasive methods for investigating the cortical representation of language has been explored in several studies. Recently, studies comparing MEG to the gold standard Wada procedure have found inconsistent and often less-than accurate estimates of laterality across various MEG studies. Here we attempted to address this issue among...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 23 3 شماره
صفحات -
تاریخ انتشار 2004